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A numerical solution of axisymmetric cavity flows 

By CHRISTOPHER BRENNENt 
Ship Division, National Physical Laboratory 

(Received 29 December 1967 and in revised form 12 December 1968) 

In  the first part of the paper a method is developed for the relaxation or numerical 
solution of axisymmetric fully cavitating flows. Employing the technique 
suggested in a paper by Woods (1951 a)  of working in a transformed (4, $)-plane, 
solutions are obtained for cavities behind a disk and a sphere in different sizes 
of solid wall tunnel. Under certain conditions flow ‘choking’ occurs. 

The results of a series of experiments carried out with such headforms are 
then reported. The apparent viscous effect on the position of separation from the 
sphere and thus on the drag proves to be of particular interest. 

1. Introduction 
The principal object of this paper is to compare and contrast the axisymmetric 

potential flow solutions for the steady, fully developed cavity flow past a disk 
and a sphere with experimental observation. However, the apparent effects of 
viscosity, surface tension, etc., in these particular cases may be indicative of the 
influences these properties have in other types of fully developed cavity flow. 
For the sphere, special interest centres on the comparison of the observed 
separation position with that calculated using the ‘smooth separation ’ condition 
(Armstrong 1953). 

Numerical or relaxation solutions of the axisymmetric potential flows are 
obtained in a transformed (4, $)-plane, the method being based on the work of 
Woods (1951 a). However, the treatment of the cavity surface free streamline is 
novel. Southwell & Vaisey (1 946) obtained relaxation solutions of some free- 
streamline problems with axial symmetry by working in the physical plane. This 
necessarily involved irregular stars ’ and the adjustments to the free boundary 
would seem to have been based on physicaI reasoning at  each stage of the desk 
calculations. The only cavity solution obtained was of the physically improbable, 
‘ cusped ’ type. 

Of the integral methods employed only the vortex sheet solutions of Armstrong 
& Dunham (1953) can take into account the separation singularity. Solutions 
of the flow of an infinite stream past a disk (the separation point therefore being 
initially known) were obtained by this method. The same problem was also 
treated by Garabedian (1955) who approached the axisymmetric case by suc- 
cessive corrections to the corresponding planar flow, each correction involving 
the solution of a linear mixed boundary-value problem. Finally, a number of 
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simple, semi-empirical correspondence methods have been suggested which yield 
approximate pressure distributions on the axisymmetric wetted surface knowing 
the distribution for the equivalent planar flow (Fisher 1944; Armstrong & 
Tadman 1954; Plesset & Shaffer 1948). 

2. Mathematical model of the cavity flow 
Two particular regions of the cavity flow pose special problems in the setting 

up of a mathematical, potential flow model and both have received considerable 
attention in the past. In  practice the downstream closure region is marked by 
considerable turbulence and some local unsteadiness so that no potential flow 
solution can expect to be accurate in this region. Being the simplest and most 
widely used, the model of Riabouchinsky (1920), which assumes longitudinal 
symmetry about a plane through the points of maximum diameter of the cavity, 
has been employed here. Most authors (e.g. Woods 1961) agree that, within limits, 
the choice of closure model has little effect on the flow a t  the upstream end of 
the cavity and this is confirmed by the results of the present investigation. 

The second point is that in real flows separation is essentially a viscous pheno- 
menon occurring where the wetted surface shear stress becomes zero. When the 
flow is considered as potential and non-viscous and separation takes place from 
a smooth headform surface it transpires (Woods 1961; Armstrong 1953) that 
the only ‘physically realistic’ solution in either planar or axisymmetric flow is 
given when the radius of curvature of the free streamline is continuous with that 
of the headform. However, this solution is only ‘physically realistic’ in the sense 
that the free streamline neither cuts into the headform nor does it have a concave 
curvature viewed from the fluid (Birkhoff & Zarantonello 1957). There is of 
course another class of headform for which the position of separation is fixed by 
a sharp corner on the body. In  this paper solutions are obtained for one headform 
of each type, respectively a sphere and a disk. 

The fact that a relaxation solution is to be obtained imposes the additional 
condition that the field of flow to be solved must be finite in extent. Thus an 
upstream boundary, AF, and a stream-limiting boundary, AB, have been 
included in the model of the physical plane (figure 1). It is convenient to consider 
AB as a tunnel wall and approach the infinite stream solution asymptotically. 
By assuming uniform flow or some small deviation from it on the boundary AF 
(see $ 5  (i)) the required solution could be obtained by increasing xu until further 
increase had a negligible effect on the results. 

Stokes’s stream function, $, and the velocity potential, Q, are defined through 

(1) 
%=,=-- la$  3- - 2, z? 1 
ax r a?’ ar r ax’ 

(u, v) being the components in the (x, r)-directions of the velocity vector, q, whose 
direction is at an angle 0 to the axis, r = 0. It is convenient to define dimension- 
less variables as follows: 
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where U is the uniform upstream velocity, q5s the potential difference between 
the points E and D and p H  the value of qk on the solid boundary AB. Then 
equations ( 1 )  become: 

(3) 
l ay  l a @  1 ayP 1 a@ 

a ax1 rlar’ ’ aar‘ ax! ) - u.l= -- -_ = 2)’ = _ _  - _ _  - 

where a =  +UHI$, or qkHlq5sH since pH = *H2U. 
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FIGURE 1. The physical (2, r)-plane. 

In  the physical plane the positions of the boundaries BC and CD as well as the 
shape of the latter are initially unknown. In  such a problem it is particularly 
convenient to follow the method of Woods (1  951 a) and, instead of solving for 
q5 or $ in the physical plane, to seek a solution for either x or r in the trans- 
formed plane, the dimensionless form of which is shown in figure 2. 

For a given headform shape, two parameters define a unique solution in the 
physical plane: (i) the cavitation number, (T = (pu -pc ) / ipU2 ,  where pu, pc are 
the remote upstream and cavity pressures and p is the density of the fluid. 
Assuming uniform cavity pressure, this specifies the constant free-streamline 
velocity, qc = U J (  1 +a); (ii) the ‘blockage ratio’, C / H .  

The cavitation number must be retained as a solution parameter in the (a, Y)- 
plane, defining as it does the boundary condition on CD. But the choice of the 
dimensionless variables, (2), clearly requires that a replace C/H as the second 
parameter. The latter will then emerge in the solution of the problem. 

Having specified o and a a unique solution should then be obtainable in the 
(a, Y)-plane. Clearly the distance Qu is treated in the same manner as would be 
xu, being increased until further increase has negligible effect on the results. 
Thus the geometry of figure 2 is defined except for the distance QF or, in other 
words, the position of the equipotential boundary BC. This is initially unknown. 

The next five sections outline the equations and numerical techniques em- 
ployed to effect solution. 

43 Fluid Mech. 37 
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3. Equations of flow 
The equations of Woods (1951~)  are rewritten in terms of the dimensionless 

variables, (2), and with the intention of solving for g = (Y')~ in the (@, Y)-plane: 

A Y = l  5- I 

I 
I 
I 
1 

F u v  c' C C C "  

-@"-l--F- 

FIGURE 2.  The dimensionless (@, Y)-plane. 

From the solution, g(@, 'Y), the values of u', v', g', 8 and x' a t  any point can be 
obtained by employing (4) and (5) and relations which follow from those 

4. Numerical and relaxation equations 
To effect the numerical solution, the (a, Y)-plane was first covered by a mesh 

or net, parts of which are shown in figure 2 .  The net included the boundaries 
AB, CDEF and AF as mesh lines and the points A ,  D, E and P as nodes. The 
initially unknown position of BC was defined, relative to the particular mesh 
lines B"C" and B"'C"' by the fractional mesh length, c.n (figure 2 ) ,  c eventually 
being determined as part of the solution. Conventional finite-difference methods 
yield the following approximation to the field equation, (6), at a general node 0 
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(the points surrounding that node being labelled as indicated in the middle of 
figure 2): 

e ) 2 1 n ( y )  +g2+g4-2go = o (=yo) ,  

where the mesh intervals in Q and Y are n and nz. The intrinsic error is a function 
of rn4, n4, a* In g/aQ4, a4g/aY4 and higher orders and powers. This equation being 
non-linear, a point-by-point Gauss-Seidel iterative procedure, starting with 
‘guessed’ values of g a t  all nodes, was employed for solution. Superscripts, i, 
denoting the value at a node after i iterations, this involved repeating the 
following operation at  every point : 

where Yo is the residual or particular value of the left-hand side o f  (10) during 
that moment in the iterative process and w is a chosen over-relaxation factor. 

5. Boundary conditions 
The boundary conditions and their finite-difference forms must be briefly 

listed. (i) On the upstream boundary, AF, the simplest condition would be to 
assume uniform flow, g = Y. However, an improvement upon this reduced the 
minimum Qu necessary for satisfactory solution. A study of the various analytic 
solutions for axisymmetric non-separating flows past simple bodies (Lamb 1932) 
revealed that for two points such as P and Q (figure 2) the relation 

was an accurate solution to the upstream flow provided (go - Y,) < \rp. This 
alternative boundary condition, already in numerical form since it relates g, to 
gQ, allows some perturbation from uniform flow. It remains to note that the use 
of this condition means that the equipotential, AF, no longer necessarily trans- 
forms back into a line of constant x in the physical plane. (ii) On the wall, AB,  
g = 1 and on the axis, EF, g = 0. (iii) On the wetted surface boundary, DE, the 
function O ( g )  is known for a particular headform. Thus, through (8) ,  the con- 
ditions on DE for the disk and sphere become respectively 

where gD is the value of g and 5, the angle o f  flow at the separation point, D. 
Neither of these quantities is initially known and their ‘relaxation’ is discussed 
in the next section. The physical radius of the sphere is determined from the 
solution by the relation (R/H)2 = gD/cos20s. Finite-difference forms of the first 
derivatives, inserted in (13) complete the governing equations for node points, 
0, on DE. 

(14) 
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These contain the same order of error as the field equation, (10) .  (iv) The condition 
of symmetry about the boundary, BC, leads to the following relation for the 
value of g at  a point such as T (figure 2) in terms of the values at  R and 8: 

( 2 c + l ) g ,  = 4cg~+(1-2c)g, .  (16) 

A value for c is obtained for each iteration by the method outlined below. (v) The 
requirement of constant velocity on the free streamline leads, through (7) ,  to  
the following condition on DC: 

[22 (a9)2]-1- 1,  
go a@ + ayp 0-= 

where the expressions (14) and (15) were again used for the first derivatives. 
The value of the right-hand side at a particular moment in the iterative process 
is termed the ‘local cavitation number’, go, and it is convenient to consider 
(go  - a) as the residual at  a general point, 0, on the boundary DC. Now if the 
procedure of (11)  were followed the residual a t  a boundary point such as U 
(figure 2) would be dispersed by changing g,. It can be shown that this would 
almost invariably imply that g, ought to be decreased if au were greater than v .  
But this is contrary to physical experience; as the size of a cavity increases, v 
decreases. On the other hand, if the residual at  U were dispersed by altering gv 
rather than g, then the numerical equations indicate a direction of change com- 
patible with physical experience. Further, this second mode of relaxation on the 
boundary EF, unlike the first suggested method, provides a means of com- 
puting a new value for the fractional mesh length, c,  after each iteration. The most 
downstream point at  which (ao - a) can be computed is C” (figure 2). Use of the 
second method then determines a new value at C” and substituting gc, gcq, gc- 
into (1  6) yields a new value of c which can then be used universally to determine 
values at  all other points on B“C“. Essentially, this procedure amounts to con- 
vecting the residuals on DC downstream and finally eliminating them by 
adjusting the position of the boundary BC. 

The actual procedure adopted differed only in detail from this second method. 
Care had to be taken to achieve satisfactory convergence. Thus it was found 
desirable to define the g values on EF by the recurrence relation, do = g, - go, 
and to use the slightly modified procedure 

p1 being a chosen constant. Further experience indicated that stability and 
convergence were enhanced by simplifying this to 

dit l  = di 
0 - nPz(0-i - 0-1, 

where the factor P2 was suitably optimized. 
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6. Singularities 
Special treatments had to be devised for the groups of nodes in close proximity 

to the singular points at stagnation and separation, since the larger values of 
the higher derivatives in these regions lead to unacceptably large errors in the 
normal finite-difference approximations. Owing to the non-linearity of the govern- 
ing equation (6) the ‘function splitting ’ methods of Russell (1963), Woods 
(1951 b )  and others are unfortunately not available. However, satisfactory results 
were obtained by imposing upon those groups of points an analytic solution 
known to be of the correct type and containing a number of initially unknown 
constants by which it could be matched into the surrounding finite-difference 
solution. Initial computations determined the minimum necessary size of the 
region to be treated. 

For this purpose, the analytic solutions for the non-separating flow past a 
disk and a sphere (Lamb 1932) were employed in the vicinity of the respective 
stagnation points. Since, for example, the flow near the disk stagnation point in 
the cavitating solution could probably be better matched by the non-cavitating 
analytic solution for a disk of different radius, the ‘headform size’ in both 
analytic solutions was employed as a matching constant. 

In  the case of separation, however, analytic solutions had to be developed 
from scratch for use near that singularity. A modified set of co-ordinates, (.$, a), 
with origin a t  the separation point, D, were defined so that 

and the corresponding polar co-ordinates denoted by (p,  r ) ,  where r = 0 described 
the free streamline, r = zr the wetted surface. Then it was assumed that the solu- 
tion close to the origin could be written in the form 

W 

- 9 = h = 1 + ptkFk(r), 
90 k= 1 

where the powers, t,, and the functions Fk(7) were initially unknown. The con- 
dition of finite, non-zero flow velocity at separation demanded that t ,  = 1. Then 
substitution into the field equation (6) and the boundary conditions eventually 
produced the following solution for the case of the disk: 

h = 1 + [2 cos 71 p + [K,  sin (37/2)]p$ + (18) 

K ,  being an arbitrary constant. Further algebra revealed that a positive, non- 
zero K ,  implied that the radius of curvature of the free streamline (positive if 
convex viewed from the fluid) tended to +co and the pressure gradient on the 
wetted surface to - co as the separation point was approached. Armstrong (1953) 
termed this ‘abrupt’ separation since it can clearly only occur from a sharp 
edge on the headform. 
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A similar expression was obtained for the sphere. However the only ‘physically 
realistic’ case (see $ 2 )  is that for which the constant corresponding to K ,  is 
zero, yielding the ‘smooth separation ’ solution: 

h = 1 + [ 2 ~ o s ~ ~ s i n ~ + 2 s i n O , c o s ~ ] ~  

+ [sin 0, cos 0, sin 27 - cos2 0, cos 27 + sin2 O,] p2 + . . . . ( 19) 

Truncating (18) and (19) at the same power (p2) produced analytic solutions 
with two matching constants in each case; gD and K ,  for the disk, and 0, for the 
sphere. In  this way the angle of separation from the sphere emerged from the 
solution. In  addition, these relations provided the values of g at  the first few 
nodes on DC thus initiating the free-streamline relaxation procedure described 
in 5 5 .  

7. Further remarks. The phenomenon of choked flow 
Though the essential points of the numerical method of solution are contained 

in the preceding sections, much of the detail has been omitted, having been 
reported elsewhere (Brennen 1966). Test solutions, error and convergence 
analyses were employed in determining the most eEcient mesh geometry; the 
final net contained much smaller m, n in the region of the wetted surface than, 
say, near the tunnel wall. Error analyses of the solutions reported upon here 
indicated a maximum possible error in the g values of less than 0.5 yo. Stability 
restrictions on the over-relaxation factors limited convergence. Typically one 
solution required 30 min on a KDF 9 computer. 

Finally it remains to note that, for a certain range of the parameters cc and (T, 

solutions of the present type are unobtainable. Cavity flows in streams limited 
by solid walls exhibit a phenomenon in which, for a given stream and cavity 
pressure, the velocity of the flow cannot be increased above a certain maximum. 
This limit, termed ‘choked flow ’, wasinvestigated by Birkhoff, Plesset & Simmons 
(1950) for the case of planar flow. It can be shown (Birkhoff & Zarantonello 1957) 
that the following simple relations hold for choked axisymmetric flows of the 
type given by figure 1.  

(B/H)choked flow = c1 - (l  f (T)-*lt, (20) 

(CD)choked flow = ( H / c ) 2  [(l+ - ‘I2, (21) 

C, being the coefficient of drag [C, = (drag)/&rpU2C2)]. In  this limit the cavity 
is infinitely long. Thus the condition is independent of the choice of cavity 
closure model. It can also be shown that, for a given (T, the minimum values of 
both C, and (C/B) occur at  choking. In non-choked flows the right-hand sides of 
(20) and (21) are denoted by (B*/H)  and C;. Thus, for example, the intersections 
of curves for C, and C;i; against H/C for fixed (T locate the choked condition. 
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8. Experiments 
In a series of experiments, carried out in the no. 2 water tunnel of Ship Division, 

N.P.L. (Silverleaf 1960)) natural cavities behind 3in. and l i in .  diameter 
spherical and 3 in. diameter diskal headforms were produced and photographed 
with high-speed flash equipment (exposure N 20ps). The headforms were 
supported with their centres on the axis of the 44in. diameter working section 
by means of a downstream sting itself supported by a radial strut (Brennen 
1969). At a particular tunnel velocity, U (up to 45ft./s), different a were obtained 
by varying the tunnel pressure, pu (minimum about 2.4in.Hg). For the larger 
sphere and the disk, a, was computed from mercury vacuum manometer measure- 
ments of the cavity pressure, p,. The pressure line to a tapping in the back face of 
the headform was cleared of any possible water drop blockage by a short burst 
of air prior to each reading (as recommended by Gadd & Grant 1965). Details 
of these measurements and their relation to the water vapour pressure, p,, are 
given elsewhere (Brennen 1969). The values of u for the l+in. sphere are less 
accurate, being based on the assumption p ,  = pv, though the air content of the 
water was maintained at  a low value ( N 4p.p.m.) to minimize the error. 

The distances from the front stagnation point to the rear closure point (L,) 
of cavities behind the 3in. sphere were measured from a scale attached to the 
tunnel window. The positions of separation from the two spheres were estimated 
from the photographs and, for the larger headform, by using a parallax method 
employing axes and scales fixed to the windows on opposite sides of the working 
section. The latter method revealed that the separation position required some 
minutes to adjust itself after a change in the flow conditions, but thereafter 
virtually no variation was observed. The results of these experiments are used 
for comparison in figures 9 and 13, and figures 14 and 15, plates 1 and 2. 

9. Results for the disk 
The pressure distributions on the wetted surface of the disk for given a, 

different H/C were indistinguishable on the scale of figure 3. Variation with u 
was also small and only the distributions for a = 0.3 and 0.7 are shown since 
the curves for other a lay regularly in relation to these. There is close agreement 
with the experimental measurements of Rouse & McNown (1948) of which those 
for a = 0.24 are shown. The results for C,, presented in figure 4, exhibit a total 
variation in C,/( 1 -t- c) of under 2+ %, clearly demonstrating the accuracy of 
Reichardt’s (1945) empirical formula, which treats it as constant. On the scale of 
figure 4, the corresponding graphs of C z / (  1 + a) deviate negligibly from the 
verticals indicated. Owing to the evidently small angle of intersection it was not 
feasible to predict the choked conditions in figure 4. The infinite-stream values 
are replotted in figure 5 and compare favourably with those of Garabedian (1955) 
and Armstrong & Dunham (1953). Fisher’s (1944) correspondence principle (see 
8 1) is evidently more accurate than that of Plesset & Shaffer (1 948), the curve for 
the latter lying below the horizontal axis of figure 5. Experimental measure- 
ments by Reichardt (1 945) and Eisenberg & Pond (1948) yielded values of 0.79 
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3 

FIGURE 3. Pressure distributions on the surface of thc disk. Coefficient of pressure, C,, 
is ( p - - p u ) / t p U z  OP 1 - (q /U)a .  ___ - __ , Values of C ,  computed for u = 0.3 and 0.7; 
m, experimental measurements for u = 0-24 by Rouse & McNown (1948). 

10 15 20 25 30 35 

HIC 
FIGURE 4. Disk results. ---o---, C,/( 1 + 17) ; - - - - -, C;/( 1 + u). 
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and 0.80 respectively, any variation with r being outside possible experimental 
accuracy. Significantly lower experimental values of C,/( 1 + a) could be due to 
the assumption of pc = p,,, yielding higher a than actually pertain since pc > pc. 
The impossibility in real flows of the theoretical, infinite pressure gradient a t  
separation may lead to a reduction in the surface pressure just upstream of that 
point (for a given a) and thus a lower drag. 

1 1 L I I I I 3 

U 

FIGURE 5. Disk results for H / C  = co. - - -, Armstrong & Dunham (1953); - - - - -, 
Fisher (1944); m, Garabedian (1955); -0-, present results for H/C = m. 

In figure 14, the corresponding theoretical cavity profile has been super- 
imposed upon one of the photographs of cavities behind the 3 in. disk. The profiles 
virtually coincide. In figure 6 the results for (C/B)2  and (C/B*)2 have been 
tentatively extrapolated to predict the ‘ choked flow line ’. The construction was 
aided by assuming that the limiting condition occurred at the values of H / C  
given by the near-vertical lines in figure 4. The main dimensions of the cavity, 
(C/B)2  and (CIL), are compared in figures 7 and 8 with the experimental measure- 
ments of Rouse & McNown (1948) and Eisenberg & Pond (1948), with the theo- 
retical results of Armstrong & Dunham (1953) and with Reichardt’s (1945) 
empirical formulae though the last was only designed for the range 0 < a < 0.1 
from measurements in a free jet tunnel. 

10. Results for the sphere 
The computed and experimentally observed positions of separation from the 

spherical headforms are presented in figure 9 ((90- 8,) being the angle between 
stagnation and separation in degrees) along with the measurements of Hsu & 
Perry (1954). Armstrong & Tadman (1954) employed an approximate similitude 
relation to obtain their theoretical line (see also figure 11)  from that of the corre- 
sponding planar flow past a cylinder (also shown). Incidentally, their curves 
show 8, tending to zero as IT --f co. But, since the Riabouchinsky model is used, 
the limiting condition of no cavity must surely be given by the respective fully 
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HIC 
FIGURE 6. Disk cavity width paramcter as a function of H / C  and u. -0-, results 

obtained for (C /B)2 ;  - - - x - - - , corresponding curves for (C/B*)2 .  

U 

FIGURE 7. Disk cavity width parameter as a function of u and H / C .  -n-, Reichardt's 
(1945) formula; -0-, Armstrong & Dunham 1953; -A-, Rouse & McNown (1948) 
A - -, Eisenberg & Pond (a mean line) ; - - -, present results for various H/C as 
marked. 
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FIGURE 8. Disk cavity half-length parameter as a function of d and H / G .  -m-, 
Reichardt’s (1945) formula; --O--. Armstrong & Dunham (1953); -A-, Rouse & 
McNown (1948); - - -, present results for various H/C as marked. 

U 

FIGURE 9. Computed and observed locations of separation 
from the spherical headforms. 
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attached potential flows; that is to say as 8, -+ 0, cr -+ lt and CD/( 1 + cr) + =j for 
the sphere and cr -+ li, CD/(  1 +a) + 8 for the cylinder. 

Examination of the variation in the difference between theoretical and 
experimental separation positions does seem to reveal a fairly consistent de- 
pendence on the Reynolds number, Re = 2UR/v. Thus the lines A A  and BB may 

1 .o 

0.8 

06 

0.4 

0 2  
uf’ 

0 

- 0.2 

-0.4 

- 0.6 

FIGURE 10. Pressure distributions on the wetted surface of the sphere for various a as 
shown. --- , potential non-cavitating distribution ; , experimental, Rouse & 
McNown (1948) (a = 0.3); +, separation points; --o-, individual mesh 
point values of G, (for = 0.2). 

represent the real positions for Reynolds number of 3-4 x lo5 and 5-2 x lo5 
respectively. Since, on the other hand, the scatter does not correlate at  all well 
on the basis of Weber number it must be concluded that the influence of surface 
tension on the separation position is minor compared with the viscous effect. 

As in the case of the disk the pressure distributions on the wetted surface of 
the sphere for a particular a and different H / C  were indistinguishable on the 
scale of figure 10 except for the slight change in separation position. The experi- 
mental measurements of Rouse & McNown (1948), of which those for cr = 0.3 are 
shown, again agreed closely with the computedresults. The variation in C,/( 1 + a) 
encountered ( -  20 yo) was, however, much greater than for the disk. Owing to 
the fact that results were obtained close to the choked condition it was feasible 
to estimate that limit and plot curves for various HIR in figure 11. The experi- 
mental measurements of drag due to Waid (1957), Eisenberg & Pond (1948) and 
Hsu & Perry (1954) all lie significantly below the respective theoretical curves 
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in figure 11. This is somewhat surprising since it might be argued that, with the 
higher experimental values of (90 - 8,) and pressure distributions similar to those 
of figure 10, the experimental drag ought to be greater than the theoretical. A clue 
to the explanation of these apparently anomalous results may, however, lie in the 
following observation. The experimental pressure distribution measurements of 

0.28 

0.26 

0.52 I I I I I 

Sphere experiment 
/C-Eisenberg & Pond Mean lines 

,. /. /' ( 1948) }Re  = 3 x  10'- - - 
,/ 8 . 3 ~  lo5 p Hsu & Perry (1954) 

.,, '.. I 1 I 1 

0.46 1 

0.28 

0.26 

0.42 
0'44 Ir 

Sphere experiment 
/C-Eisenberg & Pond Mean lines 

,. /. /' ( 1948) }Re  = 3 x  10'- - - 
,/ 8 . 3 ~  lo5 p Hsu & Perry (1954) 

.,, '.. I 1 I 1 

Cylinder, experiment (Waid 1957) 
(Re = 15X 105+2.5x lo5) I 

i 
6 0.40 

+ 
3 I . .  

0.38 

Rouse & McNown (1948) (lin. sphere) and Konstantinov (1950) (5-50 mm 
spheres) for fully developed cavities (roughly < 0.7) are not only close to theory 
but also indicate that cavity pressure is reached at  about 60" to 65" from the 
stagnation point. Thus it appears that there may be a region of attached flow 
of virtuany constant pressure between the theoretically predicted and actual 
separation points. Since the time required for vaporization is large compared with 
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U 

FIGURE 12. Sphere. Maximum cavity radius as a function of u and H/R.  0, Rouse & 
McNown (1948), experiment; ~ , present results for various H / R ;  - - - - -, result for 
choked flow. 
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04  
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5. 0 3  

0.2 1 
0 01 0 2  0.3 04 0.5 0.6 

U 

FIGURE 13. Sphere. Cavity half-length parameter as a function of u and H / R .  0, experi- 
mental results (HIR = 14.67); __ , present results for various H / R  as marked. 
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the residence time of fluid particles, it seems reasonable to assume that this 
region includes pressures lower thanp, in order to produce the small but necessary 
adverse pressure gradient required to effect viscous separation. This may account 
for some reduction from the theoretical drag. However, low values of C,/( 1 + a) 
may, as mentioned in the last section, also result from underestimating pc. 

In figure 15, the corresponding theoretical cavity profile has been superimposed 
on one of the photographs taken during the experiments with the 3in. sphere. 
Though at  this magnification the photographic definition is poor, it would appear 
that the greatest discrepancy occurs near the actual separation point and that 
the downstream cavity surface asymptotes roughly to the theoretical. Boundary- 
layer growth in the roughly constant pressure zone upstream of separation and 
its dispersion following separation could account for the difference between the 
two profiles. The angle between the tangents to the cavity surface and the 
headform a t  separation (about 7’) is typical in general of boundary-layer 
separation. 

The cavity dimension parameters, (R/B)2 and (RIL), are plotted in figures 12 
and 13. In the last figure, the measured values of (2R/L,) from the 3in. sphere 
experiments lie along a curve compatible with theory since the relevant H / R  is 
14.67. However, as CT is increased and the size of the cavity is reduced, the Ria- 
bouchinsky model becomes less accurate and the values for the smallest cavities 
begin to depart from the theoretical line. 

1 1. Concluding remarks 
Comparison with experiment suggests that the solutions obtained by the 

numerical method are quite accurate. The flow is particularly well modelled 
in the case of the headform with a fixed separation point, namely the disk. 
Observed separation from the sphere occurs well downstream of the position pre- 
dicted by theory, owing principally to boundary layer or viscous effects. Despite 
and apart from this it would appear that the flow is satisfactorily modelled by 
the assumption of ‘smooth’ separation. The present evidence suggests the 
existence of a region of virtually constant wetted surface pressure between the 
theoretically predicted and actual separation positions. Detailed pressure 
measurement in this zone is required to confirm this. Investigations of the varia- 
tion of pressure and the vapour flow within a cavity and accurate measurement 
of p ,  may account for the measured drag being almost invariably smaller than 
that predicted by theory. 
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FIGURE 14. Comparison of theoretical and experimental cavity profiles 
for disk headform (v = 0.2, U = 40 ft./s). 
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FIGURE 15. Comparison of t,heoretical and experimental cavity profiles in the 
rogiori of separation from the sphere (v = 0.2, CJ = 45 ft>./s). 
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